Multi-Scale Proposal Generation for Ship Detection in SAR Images

Author:

Liu Nengyuan,Cao ZongjieORCID,Cui Zongyong,Pi Yiming,Dang Sihang

Abstract

The classic ship detection methods in synthetic aperture radar (SAR) images suffer from an extreme variance of ship scale. Generating a set of ship proposals before detection operation can effectively alleviate the multi-scale problem. In order to construct a scale-independent proposal generator for SAR images, we suggest four characteristics of ships in SAR images and the corresponding four procedures in this paper. Based on these characteristics and procedures, we put forward a framework to explore multi-scale ship proposals. The designed framework mainly contains two stages: hierarchical grouping and proposal scoring. Firstly, we extract edges, superpixels and strong scattering components from SAR images. The ship proposals are obtained at hierarchical grouping stage by combining the strong scattering components with superpixel grouping. Considering the difference of edge density and the completeness and tightness of contour, we obtain the scores to measure the confidence that a proposal contains a ship. Finally, the ranking proposals are obtained. Extensive experiments demonstrate the effectiveness of the four procedures. Our method achieves 0.70 the average best overlap (ABO) score, 0.59 the area under the curve (AUC) score and 0.85 best recall on a challenging dataset. In addition, the recall of our method on three scale subsets are all above 0.80. Experimental results demonstrate that our algorithm outperforms the approaches previously used for SAR images.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3