A Comparative Study on the Switching Performance of GaN and Si Power Devices for Bipolar Complementary Modulated Converter Legs

Author:

Wang Baochao,Dong Shili,Jiang Shanlin,He Chun,Hu JianhuiORCID,Ye Hui,Ding Xuezhen

Abstract

The commercial mature gallium nitride high electron mobility transistors (GaN HEMT) technology has drawn much attention for its great potential in industrial power electronic applications. GaN HEMT is known for low on-state resistance, high withstand voltage, and high switching frequency. This paper presents comparative experimental evaluations of GaN HEMT and conventional Si insulated gate bipolar transistors (Si IGBTs) of similar power rating. The comparative study is carried out on both the element and converter level. Firstly, on the discrete element level, the steady and dynamic characteristics of GaN HEMT are compared with Si-IGBT, including forward and reverse conducting character, and switching time. Then, the elemental switching losses are analyzed based on measured data. Finally, on a complementary buck converter level, the overall efficiency and EMI-related common-mode currents are compared. For the tested conditions, it is found that the GaN HEMT switching loss is much less than for the same power class IGBT. However, it is worth noting that special attention should be paid to reverse conduction losses in the PWM dead time (or dead band) of complementary-modulated converter legs. When migrating from IGBT to GaN, choosing a dead-time and negative gate drive voltage in conventional IGBT manner can make GaN reverse conducting losses high. It is suggested to use 0 V turn-off gate voltage and minimize the GaN dead time in order to make full use of the GaN advantages.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Dead Time Selection in GaN FET Switching Leg Via Thermal Analysis;2023 IEEE Energy Conversion Congress and Exposition (ECCE);2023-10-29

2. Zasilacz sterowany cyfrowo z przetwornicą reverse buck;PRZEGLĄD ELEKTROTECHNICZNY;2023-09-28

3. Wide Band Gap Devices and Their Application in Power Electronics;Energies;2022-12-03

4. Influence of Quality of Mounting Process of RF Transistors on Their Thermal Parameters and Lifetime;Applied Sciences;2022-06-16

5. Hybrid GaN-SiC Power Switches for Optimum Switching, Conduction and Free-Wheeling Performance;2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD);2022-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3