Author:
Gao Xin,Li Xiaobing,Zhao Bing,Ji Weijia,Jing Xiao,He Yang
Abstract
Many factors affect short-term electric load, and the superposition of these factors leads to it being non-linear and non-stationary. Separating different load components from the original load series can help to improve the accuracy of prediction, but the direct modeling and predicting of the decomposed time series components will give rise to multiple random errors and increase the workload of prediction. This paper proposes a short-term electricity load forecasting model based on an empirical mode decomposition-gated recurrent unit (EMD-GRU) with feature selection (FS-EMD-GRU). First, the original load series is decomposed into several sub-series by EMD. Then, we analyze the correlation between the sub-series and the original load series through the Pearson correlation coefficient method. Some sub-series with high correlation with the original load series are selected as features and input into the GRU network together with the original load series to establish the prediction model. Three public data sets provided by the U.S. public utility and the load data from a region in northwestern China were used to evaluate the effectiveness of the proposed method. The experiment results showed that the average prediction accuracy of the proposed method on four data sets was 96.9%, 95.31%, 95.72%, and 97.17% respectively. Compared to a single GRU, support vector regression (SVR), random forest (RF) models and EMD-GRU, EMD-SVR, EMD-RF models, the prediction accuracy of the proposed method in this paper was higher.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献