Abstract
Voltage sag is one of the most serious problems in power quality. The occurrence of voltage sag will lead to a huge loss in the social economy and have a serious effect on people’s daily life. The identification of sag types is the basis for solving the problem and ensuring the safe grid operation. Therefore, with the measured data uploaded by the sag monitoring system, this paper proposes a sag type identification algorithm based on K-means-Singular Value Decomposition (K-SVD) and Least Squares Support Vector Machine (LS-SVM). Firstly; each phase of the sag sample RMS data is sparsely coded by the K-SVD algorithm and the sparse coding information of each phase data is used as the feature matrix of the sag sample. Then the LS-SVM classifier is used to identify the sag type. This method not only works without any dependence on the sag data feature extraction by artificial ways, but can also judge the short-circuit fault phase, providing more effective information for the repair of grid faults. Finally, based on a comparison with existing methods, the accuracy advantages of the proposed algorithm with be presented.
Funder
the Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献