Identification Method for Voltage Sags Based on K-means-Singular Value Decomposition and Least Squares Support Vector Machine

Author:

Sha Haoyuan,Mei FeiORCID,Zhang Chenyu,Pan Yi,Zheng Jianyong

Abstract

Voltage sag is one of the most serious problems in power quality. The occurrence of voltage sag will lead to a huge loss in the social economy and have a serious effect on people’s daily life. The identification of sag types is the basis for solving the problem and ensuring the safe grid operation. Therefore, with the measured data uploaded by the sag monitoring system, this paper proposes a sag type identification algorithm based on K-means-Singular Value Decomposition (K-SVD) and Least Squares Support Vector Machine (LS-SVM). Firstly; each phase of the sag sample RMS data is sparsely coded by the K-SVD algorithm and the sparse coding information of each phase data is used as the feature matrix of the sag sample. Then the LS-SVM classifier is used to identify the sag type. This method not only works without any dependence on the sag data feature extraction by artificial ways, but can also judge the short-circuit fault phase, providing more effective information for the repair of grid faults. Finally, based on a comparison with existing methods, the accuracy advantages of the proposed algorithm with be presented.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction and classification of voltage sag trend based on support vector machine with parameter optimization;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12

2. Voltage sag source identification method based on extreme learning machine;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12

3. Identification method for complex voltage sag source using fuzzy grey relational analysis;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12

4. Identification method of voltage sag source based on PSO algorithm with correlation analysis of multiple measures;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12

5. A systematic review of real-time detection and classification of power quality disturbances;Protection and Control of Modern Power Systems;2023-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3