MonLink: Piggyback Status Monitoring over LLDP in Software-Defined Energy Internet

Author:

Chen Xi,Chen Yue,Sangaiah Arun,Luo Shouxi,Yu Hongfang

Abstract

While software-defined networking (SDN) has been widely applied in various networking domains including datacenters, WANs (Wide Area Networks), QoS (Quality of Service) provisioning, service function chaining, etc., it also has foreseeable applications in energy internet (EI), which envisions an intelligent energy industry on the basis of (information) internet. Global awareness provided by SDN is especially useful in system monitoring in EI to achieve optimal energy transportation, sharing, etc. Link layer discovery protocol (LLDP) plays a key role in global topology discovery in software-defined energy internet when SDN is applied. Nevertheless, EI-related status information (power loads, etc.) is not collected during the LLDP-based topology discovery process initiated by the SDN controller, which makes the optimal decision making (e.g., efficient energy transportation and sharing) difficult. This paper proposes MonLink, a piggyback status-monitoring scheme over LLDP in software-defined energy internet with SDN-equipped control plane and data plane. MonLink extends the original LLDP by introducing metric type/length/value (TLV) fields so as to collect status information and conduct status monitoring in a piggyback fashion over LLDP during topology discovery simultaneously without the introduction of any newly designed dedicated status monitoring protocol. Several operation modes are derived for MonLink, namely, periodic MonLink, which operates based on periodic timeouts, proactive MonLink, which operates based on explicit API invocations, and adaptive MonLink, which operates sensitively and self-adaptively to status changes. Various northbound APIs are also designed so that upper layer network applications can make full use of the status monitoring facility provided by MonLink. Experiment results indicate that MonLink is a lightweight protocol capable of efficient monitoring of topological and status information with very low traffic overhead, compared with other network monitoring schemes such as sFlow.

Funder

China Postdoctoral Science Foundation

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World;Rifkin,2011

2. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet

3. Towards Smart Power Networks: Lessons Learned From European Research FP5 Projects;Schmid,2005

4. Software-Defined Networking: A Comprehensive Survey

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The SDN-Governed Ad Hoc Swarm for Mobile Surveillance of Meteorological Facilities;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2021

2. Software-Defined MANET Swarm for Mobile Monitoring in Hydropower Plants;IEEE Access;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3