Author:
Li Guihua,Tang Jingjing,Tang Runsheng
Abstract
In this article, the performance of an inclined north-south axis (INSA) multiple positions sun-tracked V-trough with restricted reflections for photovoltaic applications (MP-VPVs) is investigated theoretically based on the imaging principle of mirrors, solar geometry, vector algebra and three-dimensional radiation transfer. For such a V-trough photovoltaic module, all incident radiation within the angle θ a arrives on solar cells after less than k reflections, and the azimuth angle of V-trough is daily adjusted M times about INSA to ensure incident solar rays always within θ a in a day. Calculations and analysis show that two-dimensional sky diffuse radiation can’t reasonably estimate sky diffuse radiation collected by fixed inclined north-south V-trough, but can for MP-VPVs. Results indicate that, the annual power output (Pa) of MP-VPVs in a site is sensitive to the geometry of V-trough and wall reflectivity (ρ), hence given M, k and ρ, a set of optimal θ a and φ , the opening angle of V-trough, for maximizing Pa can be found. Calculation results show that the optimal θ a is about 21°, 13.5° and 10° for 3P-, 5P- and 7P-VPV-k/ θ a (k = 1 and 2), respectively, and the optimal φ for maximizing Pa is about 30° for k = 1 and 21° for k = 2when ρ > 0.8. As compared to similar fixed south-facing PV panels, the increase of annual electricity from MP-VPVs is even larger than the geometric concentration of V-trough for ρ > 0.8 in sites with abundant solar resources, thus attractive for water pumping due to stable power output in a day.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献