Digital Fringe Projection-Based Clamping Force Estimation Algorithm for Railway Fasteners

Author:

Fan Zhengji1ORCID,Hong Yingping1ORCID,Wang Yunfeng1,Niu Yanan1,Zhang Huixin1,Chu Chengqun1

Affiliation:

1. School of Instrument and Electronics, North University of China, Taiyuan 030051, China

Abstract

The inspection of railway fasteners to assess their clamping force can be used to evaluate the looseness of the fasteners and improve railway safety. Although there are various methods for inspecting railway fasteners, there is still a need for non-contact, fast inspection without installing additional devices on fasteners. In this study, a system that uses digital fringe projection technology to measure the 3D topography of the fastener was developed. This system inspects the looseness through a series of algorithms, including point cloud denoising, coarse registration based on fast point feature histograms (FPFH) features, fine registration based on the iterative closest point (ICP) algorithm, specific region selection, kernel density estimation, and ridge regression. Unlike the previous inspection technology, which can only measure the geometric parameters of fasteners to characterize the tightness, this system can directly estimate the tightening torque and the bolt clamping force. Experiments on WJ-8 fasteners showed a root mean square error of 9.272 N·m and 1.94 kN for the tightening torque and clamping force, demonstrating that the system is sufficiently precise to replace manual measurement and can substantially improve inspection efficiency while evaluating railway fastener looseness.

Funder

Shanxi Province Colleges and Universities Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3