Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System

Author:

Guo Zhimin1,Ye Zhiyuan2,Ni Pengcheng2,Cao Can2,Wei Xiaozhao1,Zhao Jian1,He Xing3

Affiliation:

1. State Grid Henan Electric Power Research Institute, Zhengzhou 450000, China

2. Anhui Jiyuan Software Co., Ltd., Hefei 230000, China

3. Faculty of Electric Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Hydrogen (H2) energy is an ideal non-polluting renewable energy and can achieve long-term energy storage, which can effectively regulate the intermittence and seasonal fluctuation of solar energy. Solid oxide fuel cells (SOFC) can generate electricity from H2 with only outputs of water, waste heat, and almost no pollution. To solve the power generation instability and discontinuity of solar photovoltaic (PV) systems, a hybrid PV-SOFC power generation system has become one feasible solution. The “digital twin”, which integrates physical systems and information technology, offers a new view to deal with the current problems encountered during smart energy development. In particular, an accurate and reliable system model is the basis for achieving this vision. As core components, the reliable modelling of the PV cells and fuel cells (FCs) is crucial to the whole hybrid PV-SOFC power generation system’s optimal and reliable operation, which is based on the reliable identification of unknown model parameters. Hence, in this study, an artificial rabbits optimization (ARO)-based parameter identification strategy was proposed for the accurate modelling of PV cells and SOFCs, which was then validated on the PV double diode model (DDM) and SOFC electrochemical model under various operation scenarios. The simulation results demonstrated that ARO shows a more desirable performance in optimization accuracy and stability compared to other algorithms. For instance, the root mean square error (RMSE) obtained by ARO are 1.81% and 13.11% smaller than that obtained by ABC and WOA algorithms under the DDM of a PV cell. Meanwhile, for SOFC electrochemical model parameter identification under the 5 kW cell stack dataset, the RMSE obtained by ARO was only 2.72% and 4.88% to that of PSO for the (1 atm, 1173 K) and (3 atm, 1273 K) conditions, respectively. By establishing a digital twin model for PV cells and SOFCs, intelligent operation and management of both can be further achieved.

Funder

Research on Digital Twin-based Management and Interaction Technology for Efficient Collaboration of County Energy Internet

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3