A Review of Efficient and Low-Carbon Pile Technologies for Extra-Thick Soft Strata

Author:

Zhang Chaozhe1ORCID,Han Jianyong2ORCID,Liu Songyu1,Cao Zhenglong3,Jiang Chen4,Diao Xuhan3,Chen Guangwei4,Tian Li5

Affiliation:

1. Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China

2. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

3. Shandong Provincial Airport Management Group Co., Ltd., Jinan 250107, China

4. Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing 210004, China

5. School of Civil Engineering, Shandong University, Jinan 250061, China

Abstract

With the development of urban underground space and increased infrastructure functions, both the scale of engineering construction and engineering difficulties have increased globally. In the construction of structures in soft strata, especially in coastal areas, the limited bearing capacity of the foundations poses a significant challenge. The composite pile technologies employing an organic combination of the rigid pile andthe flexible column can enable efficient soft ground treatment. In light of prominent global environmental issues, low-carbon energy-saving curing technologies have been rapidly developed for application in geotechnical engineering. This paper discusses progress in research on the mechanical properties of the efficient and low-carbon pile technologies, including the stiffened deep mixing (SDM) column, squeezed branch pile, pre-bored grouting plated nodular (PGPN) pile, precast cement pile reinforced by cemented soil with a variable section (PCCV), and carbonized composite pile (CCP). In addition, it reviews the technical characteristics and recent progress of feasible low-carbon energy-efficient curing technologies. The paper also proposes future directions for theoretical research and technological development of low-carbon pile technologies. The key contribution of this review is to provide insights into efficient and low-carbon pile technologies. In addition, the findings from the study of the pile technologies used in extra-thick soft strata also provide industry practitioners with a comprehensive guide regarding the specific applications and mechanical performance of the pile technologies, which can serve as a stepping stone to facilitate the technological development of the underground space industry.

Funder

National Natural Science Foundation of China

Transportation Science and Technology Project of Jiangsu Province of China

Natural science research project of colleges and universities of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3