Review of the Data-Driven Methods for Electricity Fraud Detection in Smart Metering Systems

Author:

Badr Mahmoud12ORCID,Ibrahem Mohamed23ORCID,Kholidy Hisham1ORCID,Fouda Mostafa45ORCID,Ismail Muhammad6ORCID

Affiliation:

1. Department of Network and Computer Security, College of Engineering, SUNY Polytechnic Institute, Utica, NY 13502, USA

2. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt

3. Department of Cyber Security Engineering, George Mason University, Fairfax, VA 22030, USA

4. Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA

5. Center for Advanced Energy Studies (CAES), Idaho Falls, ID 83401, USA

6. Department of Computer Science, Tennessee Technological University, Cookeville, TN 38501, USA

Abstract

In smart grids, homes are equipped with smart meters (SMs) to monitor electricity consumption and report fine-grained readings to electric utility companies for billing and energy management. However, malicious consumers tamper with their SMs to report low readings to reduce their bills. This problem, known as electricity fraud, causes tremendous financial losses to electric utility companies worldwide and threatens the power grid’s stability. To detect electricity fraud, several methods have been proposed in the literature. Among the existing methods, the data-driven methods achieve state-of-art performance. Therefore, in this paper, we study the main existing data-driven electricity fraud detection methods, with emphasis on their pros and cons. We study supervised methods, including wide and deep neural networks and multi-data-source deep learning models, and unsupervised methods, including clustering. Then, we investigate how to preserve the consumers’ privacy, using encryption and federated learning, while enabling electricity fraud detection because it has been shown that fine-grained readings can reveal sensitive information about the consumers’ activities. After that, we investigate how to design robust electricity fraud detectors against adversarial attacks using ensemble learning and model distillation because they enable malicious consumers to evade detection while stealing electricity. Finally, we provide a comprehensive comparison of the existing works, followed by our recommendations for future research directions to enhance electricity fraud detection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3