Development of Manganese-Coated Graphite Electrode in a Dual-Chambered Fuel Cell for Selenite Removal and Bio-Electricity Generation from Wastewater Effluent by Bacillus cereus

Author:

Velayudhan Jayanthi1,Subramanian Sangeetha1ORCID

Affiliation:

1. School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India

Abstract

A manganese oxide-coated cylindrical graphite cathode with a zinc anode was developed to treat wastewater containing selenite in a dual-chambered microbial fuel cell. COD and selenite removal in the anodic chamber by Bacillus cereus with energy generation were evaluated in batch mode. A manganese dioxide-coated graphite cathode was tested for its surface morphology and chemical composition using scanning electron microscopy and dispersive energy analysis of X-rays. Compared to the non-coated graphite electrode, up to 69% enhancement was observed in the manganese dioxide-coated electrode voltage generation with 150 ppm selenite concentration. The fuel cell achieved a maximum power density of 1.29 W/m2 with 91% selenite reduction and up to 74% COD (initial COD of 120 mg/L) removal for an initial selenite concentration from 100 to 150 ppm. The current study demonstrated the possibility of a modified cathode in enhancing energy generation and the use of microbial fuel cell technology to treat wastewater containing selenite.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3