Affiliation:
1. School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract
This paper proposes a new cascaded fractional-order controller (CC-FOC) to solve the load frequency control (LFC) problem of an interconnected power system. The CC-FOC consists of a three-degree-of-freedom fractional-order proportional-integral-differential (3DOF-FOPID) controller and a fractional-order proportional-integral (FOPI) controller. Each area of the two-area interconnected power system in this study consists of a thermal unit, a hydro unit, a diesel unit, and a doubly-fed induction generator (DFIG). The enhanced particle swarm optimization (PSO) and gravitational search algorithm (GSA) under the chaotic map optimization (CPSOGSA) technique are used to optimize the controller gains and parameters to enhance the load frequency control performance of the cascade controller. Moreover, simulation experiments are conducted for the interconnected power system under load perturbation and random wind speed fluctuations. The simulation results demonstrate that the proposed cascaded fractional-order controller outperforms the traditional proportional-integral-differential (PID) controller and three other fractional-order controllers in terms of LFC performance. The suggested cascade controller displays strong dynamic control performance and the resilience of the cascade fractional-order controller by adjusting the load disturbance and analyzing the system characteristics.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献