Review of Bioenergy Potential in Jordan

Author:

Nahar Myyas Ra’ed1,Tostado-Véliz Marcos1ORCID,Gómez-González Manuel1ORCID,Jurado Francisco1ORCID

Affiliation:

1. Department of Electrical Engineering, University of Jaén, 23700 Jaén, Spain

Abstract

Despite the enormous efforts put into practice by governmental entities, most of the energy consumption worldwide proceeds from fossil fuels. In this regard, there is a clear need to advance toward the use of cleaner energies. This situation is especially critical in developing countries, where a high population, increased commercial and industrial activities, and rising greenhouse gas (GHG) emissions are major concerns. This paper focuses on reviewing the current energy map in Jordan, one of the developing countries in the Southwest Asia area. Jordan generates 2.7 million tons of municipal solid waste annually, which can cause a variety of environmental problems rather than benefit the energy industry or the country’s economy. Jordan uses biomass energy to provide just 0.1% of its overall energy needs. Presently, produced energy comprises logs, chips, bark, and sawdust is made up of around 44% wood. Jordan has a high potential for producing biomass in the future. About 96% of the biomass is made up of animal manure, followed by olive trees and pomace, with a percentage of 1.8%. This work evaluates the theoretical energy potential of waste in Jordan based on previous studies. Moreover, this article looks at the biomass potential in Jordan, emphasizing how the country may become one of the top producers of bioenergy in terms of waste and identifying procedures to assess the biogas potential for common substrates in Jordanian communities (food and agricultural waste). Finally, some further recommendations are provided for developing the biomass sector in Jordan.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference100 articles.

1. Alhassany, H.D., Abbas, S.M., Tostado-Véliz, M., Vera, D., Kamel, S., and Jurado, F. (2022). Review of Bioenergy Potential from the Agriculture Sector in Iraq. Energies, 15.

2. Biogas: Developments and perspectives in Europe;Scarlat;Renew. Energy,2018

3. IEA (2022, May 25). World Energy Outlook 2022. Available online: https://www.iea.org/news/world-energy-outlook-2022-.

4. Smith, P., Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., and Mbow, C. (2014). Climate Change 2014, Cambridge University Press. Chapter 11.

5. Jaganmohan, M. (2022, June 03). Production of Bioenergy Worldwide from 2009 to 2020. Available online: https://www.statista.com/statistics/1032907/bioenergy-production-globally/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3