Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis

Author:

Tawonezvi Tendai12,Nomnqa Myalelo2ORCID,Petrik Leslie1ORCID,Bladergroen Bernard Jan1

Affiliation:

1. South African Institute for Advance Materials Chemistry (SAIAMC), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa

2. Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town 7535, South Africa

Abstract

The recycling of spent lithium-ion batteries (Li-ion Batteries) has drawn a lot of interest in recent years in response to the rising demand for the corresponding high-value metals and materials and the mounting concern emanating from the detrimental environmental effects imposed by the conventional disposal of solid battery waste. Numerous studies have been conducted on the topic of recycling used Li-ion batteries to produce either battery materials or specific chemical, metal or metal-based compounds. Physical pre-treatment is typically used to separate waste materials into various streams, facilitating the effective recovery of components in subsequent processing. In order to further prepare the recovered materials or compounds by applying the principles of materials chemistry and engineering, a metallurgical process is then utilized to extract and isolate pure metals or separate contaminants from a particular waste stream. In this review, the current state of spent Li-ion battery recycling is outlined, reviewed, and analyzed in the context of the entire recycling process, with a particular emphasis on hydrometallurgy; however, electrometallurgy and pyrometallurgy are also comprehensively reviewed. In addition to the comprehensive review of various hydrometallurgical processes, including alkaline leaching, acidic leaching, solvent (liquid-liquid) extraction, and chemical precipitation, a critical analysis of the current obstacles to process optimization during Li-ion battery recycling is also conducted. Moreover, the energy-intensive nature of discussed recycling process routes is also assessed and addressed. This study is anticipated to offer recommendations for enhancing wasted Li-ion battery recycling, and the field can be further explored for commercialization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference137 articles.

1. Review of Energy Storage Services, Applications, Limitations, and Benefits;Sopian;Energy Rep.,2020

2. ESMAP (2020). Reuse and Recycling: Environmental Sustainability of Lithium-Ion Battery Energy Storage Systems an Energy Storage Partnership Report, ESMAP.

3. Phuc Anh, L.E. (2019). The Recyclability of Lithium-Ion Battery Materials, The University of Queensland.

4. (2022, November 22). European Union Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006L0066.

5. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries;Zheng;Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3