Affiliation:
1. Department of Computer, Control and Management Engineering “Antonio Ruberti” (DIAG), University of Rome “La Sapienza”, Via Ariosto, 25, 00185 Rome, Italy
2. Consortium for the Research in Automation and Telecommunications (CRAT), Via Giovanni Nicotera, 29, 00185 Rome, Italy
Abstract
This paper presents a control strategy aimed at efficiently operating a service area equipped with stations for plug-in electric vehicles’ fast charging, renewable energy sources, and an electric energy storage unit. The control requirements here considered are in line with the perspective of a service area operator, who aims at avoiding peaks in the power flow at the point of connection with the distribution grid, while providing the charging service in the minimum time. Key aspects of the work include the management of uncertainty in the charging power demand and generation, the design of congestion and state-dependent weights for the cost function, and the comparison of control performances in two different hardware configurations of the plant, namely BUS and UPS connection schemes. All of the above leads to the design of a stochastic model predictive controller aimed at tracking an uncertain power reference, under the effect of an uncertain disturbance affecting the output and the state of the plant in the BUS and UPS schemes respectively. Simulation results show the relevance of the proposed control strategy, according to an incremental validation plan focused on the tracking of selected references, the mitigation of congestion, the stability of storage operation over time, and the mitigation of the effect of uncertainty.
Funder
European Union’s Horizon 2020 research and innovation programme
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献