Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches

Author:

Wang ZijianORCID,Wu Yimin,Yang LichaoORCID,Thirunavukarasu Arjun,Evison ColinORCID,Zhao YifanORCID

Abstract

The existing deep learning-based Personal Protective Equipment (PPE) detectors can only detect limited types of PPE and their performance needs to be improved, particularly for their deployment on real construction sites. This paper introduces an approach to train and evaluate eight deep learning detectors, for real application purposes, based on You Only Look Once (YOLO) architectures for six classes, including helmets with four colours, person, and vest. Meanwhile, a dedicated high-quality dataset, CHV, consisting of 1330 images, is constructed by considering real construction site background, different gestures, varied angles and distances, and multi PPE classes. The comparison result among the eight models shows that YOLO v5x has the best mAP (86.55%), and YOLO v5s has the fastest speed (52 FPS) on GPU. The detection accuracy of helmet classes on blurred faces decreases by 7%, while there is no effect on other person and vest classes. And the proposed detectors trained on the CHV dataset have a superior performance compared to other deep learning approaches on the same datasets. The novel multiclass CHV dataset is open for public use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Industrial head injuries and the performance of the helmets;Hume;Biomech. Impacts,1995

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3