Numerical Study on Gaseous CO2 Leakage and Thermal Characteristics of Containers in a Transport Ship

Author:

Kim Dae Yun,Jeong Chan Ho,Park Beom JinORCID,Ki Min Suk,Shin Myung-Soo,Lee Seong Hyuk

Abstract

This study investigates numerically gaseous CO2 leakage characteristics inside the containers of a transport ship and examines thermal effects on the structural damage that might happen in the containers. First, with consideration of the phase change, the ejected mass flow rate was estimated using the commercial code of DNV PHAST. Based on this estimated mass flow rate, we introduced an effective area model for accounting for the fast evaporation of liquefied CO2 occurring in the vicinity of a crack hole. Using this leakage modeling, along with a concept of the effective area, the computational fluid dynamics (CFD) simulations for analyzing transient three-dimensional characteristics of gas propagation in a confined space with nine containers, as well as the thermal effect on the walls on which the leaking gas impinges, were conducted. The commercial code, ANSYS FLUENT V. 17.0, was used for all CFD simulations. It was found that there are substantial changes in the pressure and temperature of the gas mixture for different crack sizes. The CO2 concentration at human nasal height, a measure of clear height for safety, was also estimated to be higher than the safety threshold of 10% within 200 s. Moreover, very cold gas created by the evaporation of liquefied CO2 can cool the cargo walls rapidly, which might cause thermal damage.

Funder

Brain Korea 21, supported by Ministry of Education, South Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3