Abstract
Gabor-domain optical coherence microscopy (GDOCM) is a high-definition imaging technique leveraging principles of low-coherence interferometry, liquid lens technology, high-speed imaging, and precision scanning. GDOCM achieves isotropic 2 μm resolution in 3D, effectively breaking the cellular resolution limit of optical coherence tomography (OCT). In the ten years since its introduction, GDOCM has been used for cellular imaging in 3D in a number of clinical applications, including dermatology, oncology and ophthalmology, as well as to characterize materials in industrial applications. Future developments will enhance the structural imaging capability of GDOCM by adding functional modalities, such as fluorescence and elastography, by estimating thicknesses on the nano-scale, and by incorporating machine learning techniques.
Funder
National Science Foundation
National Institutes of Health
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献