Solving Nuisance Cyanobacteria Eutrophication Through Biotechnology

Author:

Orfanidis S.ORCID,Stamatis N.ORCID,Parasyri A.,Mente M. S.,Zerveas S.,Pigada P.,Papadimitriou A.,Paschou M.,Nisiforou O.,Papazi A.,Moustaka-Gouni M.,Kotzabasis K.ORCID

Abstract

Management of nutrient inputs and usage of nuisance biomass as feedstock for bioenergy may be the solution of coastal lagoons eutrophication. We studied the species composition, photosynthetic pigments (Chl-a and Chl-c) and performance (OJIP-kinetics and JIP-test parameters), biochemistry (lipids and carbohydrates composition), and hydrogen production potential of Limnoraphis (Lyngbya) nuisance biomass collected from Lafri lagoon (1.24 km2) in Greece. The results showed that the removal of algal biomass from Lafri lagoon before its sedimentation, characterized by low Fν/Fm (0.42) and PItotal (2.67) values, and transfer of this in a simple, closed bioreactor, has the potential to produce hydrogen (H2), a renewable CO2-neutral energy that can directly be converted into electricity. The free carbohydrates of the lagoon water and that from the algal cells (42g glucose analogs per m3) could be also transferred to alcohols (biofuels), while the rest of the biomass could be used as organic fertilizer. The total lipid content (2.51%) of dry biomass composed primarily by palmitic acid was low. However, the presence of eicosapentaenoic (3.5%), and docosahexaenoic (1.7%), polyunsaturated fatty acids is worth mentioning. By harvesting and conversion of this coastal lagoon nuisance algal biomass to energy or other products, one could improve its water quality and, therefore, biodiversity and fish production; that is a sustainable solution of eutrophication necessary for the ongoing climatic change.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3