Author:
Hua ,Chen ,Zhang ,Liu ,Wen
Abstract
Previous studies have attempted to find autonomic differences of the cardiac system between the congestive heart failure (CHF) disease and healthy groups using a variety of algorithms of pattern recognition. By comparing previous literature, we have found that there are two shortcomings: 1) Previous studies have focused on improving the accuracy of models, but the number of features used has mostly exceeded 10, leading to poor generalization performance; 2) Previous works rarely distinguish the severity levels of CHF disease. In order to make up for these two shortcomings, we proposed two models: model A was used for distinguishing CHF patients from the normal people; model B was used for diagnosing the four severity levels of CHF disease. Based on long-term heart rate variability (HRV) (40000 intervals–8h) signals, we extracted linear and non-linear features from the inter-beat-interval (IBI) series. After that, the sequence forward selection algorithm (SFS) reduced the feature dimension. Finally, models with the best performance were selected through the leave-one-subject-out validation. For a total of 113 samples of the dataset, we applied the support vector machine classifier and five HRV features for CHF discrimination and obtained an accuracy of 97.35%. For a total of 41 samples of the dataset, we applied k-nearest-neighbor (K = 1) classifier and four HRV features for diagnosing four severity levels of CHF disease and got an accuracy of 87.80%. The contribution in this work was to use the fewer features to optimize our models by the leave-one-subject-out validation. The relatively good generalization performance of our models indicated their value in clinical application.
Funder
National Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献