Multi-Task Learning Using Task Dependencies for Face Attributes Prediction

Author:

Fan DiORCID,Kim HyunwooORCID,Kim Jummo,Liu Yunhui,Huang Qiang

Abstract

Face attributes prediction has an increasing amount of applications in human–computer interaction, face verification and video surveillance. Various studies show that dependencies exist in face attributes. Multi-task learning architecture can build a synergy among the correlated tasks by parameter sharing in the shared layers. However, the dependencies between the tasks have been ignored in the task-specific layers of most multi-task learning architectures. Thus, how to further boost the performance of individual tasks by using task dependencies among face attributes is quite challenging. In this paper, we propose a multi-task learning using task dependencies architecture for face attributes prediction and evaluate the performance with the tasks of smile and gender prediction. The designed attention modules in task-specific layers of our proposed architecture are used for learning task-dependent disentangled representations. The experimental results demonstrate the effectiveness of our proposed network by comparing with the traditional multi-task learning architecture and the state-of-the-art methods on Faces of the world (FotW) and Labeled faces in the wild-a (LFWA) datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Exploiting relationship between attributes for improved face verification

2. Deep convolutional neural networks for smile recognition;Glauner;arXiv,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3