A Convolutional Neural Network Based Auto Features Extraction Method for Tea Classification with Electronic Tongue

Author:

Zhong Yuan hongORCID,Zhang Shun,He Rongbu,Zhang Jingyi,Zhou Zhaokun,Cheng Xinyu,Huang Guan,Zhang Jing

Abstract

Feature extraction is a key part of the electronic tongue system. Almost all of the existing features extraction methods are “hand-crafted”, which are difficult in features selection and poor in stability. The lack of automatic, efficient and accurate features extraction methods has limited the application and development of electronic tongue systems. In this work, a convolutional neural network-based auto features extraction strategy (CNN-AFE) in an electronic tongue (e-tongue) system for tea classification was proposed. First, the sensor response of the e-tongue was converted to time-frequency maps by short-time Fourier transform (STFT). Second, features were extracted by convolutional neural network (CNN) with time-frequency maps as input. Finally, the features extraction and classification results were carried out under a general shallow CNN architecture. To evaluate the performance of the proposed strategy, experiments were held on a tea database containing 5100 samples for five kinds of tea. Compared with other features extraction methods including features of raw response, peak-inflection point, discrete cosine transform (DCT), discrete wavelet transform (DWT) and singular value decomposition (SVD), the proposed model showed superior performance. Nearly 99.9% classification accuracy was obtained and the proposed method is an approximate end-to-end features extraction and pattern recognition model, which reduces manual operation and improves efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fused convolutional transformer for voltammetric electronic tongue analysis tasks;Journal of Environmental Chemical Engineering;2024-10

2. Model-Based design of a Machine Learning algorithm for on-site food authenticity testing;2024 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0 & IoT);2024-05-29

3. Đề xuất bộ điều khiển tối ưu phi tập trung cho các quá trình lên men chè đen;Journal of Military Science and Technology;2024-02-25

4. The dawn of intelligent technologies in tea industry;Trends in Food Science & Technology;2024-02

5. Deep Learning-Based Tea Fermentation Grading;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3