Assessment of Residual Elastic Properties of a Damaged Composite Plate with Combined Damage Index and Finite Element Methods

Author:

Boursier Niutta ,Tridello ,Ciardiello ,Belingardi ,Paolino

Abstract

In structural component applications the use of composite materials is increasing thanks to their optimal mechanical characteristics. However, the complexity of the damage evolution in composite materials significantly limits their widespread diffusion. Non-destructive tests are thus becoming ever more important. The detecting Damage Index (DId) technique has been recently brought in the realm of the non-destructive characterization tests for components made of composite material. In contrast to other techniques, this methodology allows to quantitatively assess local residual properties. In this paper, the DId technique is adopted in combination with the finite element method. The mechanical response of two composite plates (an 8-layer twill fabric carbon/epoxy) subjected to four-point bending test is firstly used to tune a finite element model of the laminate. Then, an undamaged laminate of the same composite material is progressively damaged through repeated four-point bending tests. Local residual elastic properties are mapped on the plate through the DId technique. A continuous polynomial curve has been considered to account for the variation of the elastic modulus in the finite element model. The resulting force-displacement curve of the numerical analysis is compared to experimental data of damaged plate, resulting in very good agreement. The combination of the experimental activity and the numerical finite element analysis points out the accuracy of the DId methodology in assessing local residual elastic properties of composite materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Defects and Damage in Composite Materials and Structures;Heslehurst,2017

2. Nondestructive testing and structural health monitoring of marine composite structures;Ibrahim,2016

3. Materials Characterization Using Nondestructive Evaluation (NDE) Methods;Hubschen,2016

4. Automated identification and classification of internal defects in composite structures using computed tomography and 3D wavelet analysis

5. Experimental study on active infrared thermography as a NDI tool for carbon–carbon composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3