Author:
Begley-Miller Danielle,Diefenbach Duane,McDill Marc,Rosenberry Christopher,Just Emily
Abstract
Long-term vegetation monitoring projects are often used to evaluate how plant communities change through time in response to some external influence. Here, we evaluate the efficacy of vegetation monitoring to consistently detect changes in white-tailed deer browsing effects. Specifically, we compared inter-rater reliability (Cohen’s κ and Lin’s concordance correlation coefficient) between two identically trained field crews for several plant metrics used by Pennsylvania state agencies to monitor deer browsing impact. Additionally, we conducted a power analysis to determine the effect of sampling scale (1/2500th or 1/750th ha plots) on the ability to detect changes in tree seedling stem counts over time. Inter-rater reliability across sampling crews was substantial for most metrics based on direct measurements, while the observational based Deer Impact Index (DII) had only moderate inter-rater reliability. The smaller, 1/2500th ha sampling scale resulted in higher statistical power to detect changes in tree seedling stem counts due to reduced observer error. Overall, this study indicates that extensive training on plant identification, project protocols, and consistent data collection methods can result in reliable vegetation metrics useful for tracking understory responses to white-tailed deer browsing. Smaller sampling scales and objective plant measures (i.e., seedling counts, species richness) improve inter-rater reliability over subjective measures of deer impact (i.e., DII). However, considering objective plant measures when making a subjective assessment regarding deer browsing effects may also improve DII inter-rater reliability.
Funder
Pennsylvania Department of Conservation and Natural Resources
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献