Abstract
In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L−1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding β-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Reference75 articles.
1. Mechanisms of date palm resistance to Bayoud disease: Current state of knowledge and research prospects
2. Le “Bayoud”, maladie fusarienne du palmier-dattier en Afrique du nord;Malençon;Fruits,1950
3. Le bayoud du palmier dattier Une maladie qui menace la phoeiniciculture;Fernandez;Phytoma Défense Végétaux,1995
4. Compatibilité végétative d’isolats du Fusarium oxysporum f. sp. albedinis et de Fusarium oxysporum de la rhizosphère du Palmier dattier et des sols de palmeraies;Tantaoui;Phytopathol. Mediterr.,1991
5. Comparaison entre Fusarium oxysporum f. sp. albedinis et Fusarium oxysporum des sols de palmeraies par l’étude du polymorphisme de longueur des fragments de restriction (RFLP);Tantaoui;Phytopathol. Mediterr.,1993
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献