A Novel Nonparametric Feature Selection Approach Based on Mutual Information Transfer Network

Author:

Li Kunmei,Fard Nasser

Abstract

The filter feature selection algorithm is habitually used as an effective way to reduce the computational cost of data analysis by selecting and implementing only a subset of original features into the study. Mutual information (MI) is a popular measurement adopted to quantify the dependence among features. MI-based greedy forward methods (MIGFMs) have been widely applied to escape from computational complexity and exhaustion of high-dimensional data. However, most MIGFMs are parametric methods that necessitate proper preset parameters and stopping criteria. Improper parameters may lead to ignorance of better results. This paper proposes a novel nonparametric feature selection method based on mutual information and mixed-integer linear programming (MILP). By forming a mutual information network, we transform the feature selection problem into a maximum flow problem, which can be solved with the Gurobi solver in a reasonable time. The proposed method attempts to prevent negligence on obtaining a superior feature subset while keeping the computational cost in an affordable range. Analytical comparison of the proposed method with six feature selection methods reveals significantly better results compared to MIGFMs, considering classification accuracy.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3