Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR

Author:

Dymond John R.,Zörner JanORCID,Shepherd James D.,Wiser Susan K.,Pairman David,Sabetizade Marmar

Abstract

Indigenous forests cover 24% of New Zealand and provide valuable ecosystem services. However, a national map of forest types, that is, physiognomic types, which would benefit conservation management, does not currently exist at an appropriate level of detail. While traditional forest classification approaches from remote sensing data are based on spectral information alone, the joint use of space-based optical imagery and structural information from synthetic aperture radar (SAR) and canopy metrics from air-borne Light Detection and Ranging (LiDAR) facilitates more detailed and accurate classifications of forest structure. We present a support vector machine (SVM) classification using data from the European Space Agency (ESA) Sentinel-1 and 2 missions, Advanced Land Orbiting Satellite (ALOS) PALSAR, and airborne LiDAR to produce a regional map of physiognomic types of indigenous forest. A five-fold cross-validation (repeated 100 times) of ground data showed that the highest classification accuracy of 80.5% is achieved for bands 2, 3, 4, 8, 11, and 12 from Sentinel-2, the ratio of bands VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) from Sentinel-1, and mean canopy height and 97th percentile canopy height from LiDAR. The classification based on optical bands alone was 72.7% accurate and the addition of structural metrics from SAR and LiDAR increased accuracy by 7.4%. The classification accuracy is sufficient for many management applications for indigenous forest, including biodiversity management, carbon inventory, pest control, ungulate management, and disease management.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Vegetation of New Zealand;Wardle,1991

2. Conditions and trends of ecosystem services in New Zealand—A synopsis;Dymond;Solut. J.,2014

3. New Zealand’s genetic diversity;Gordon,2013

4. Large-scale pest control in New Zealand beech forests

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3