Hydrological Response of Dry Afromontane Forest to Changes in Land Use and Land Cover in Northern Ethiopia

Author:

Gebru Belay ManjurORCID,Lee Woo-Kyun,Khamzina AsiaORCID,Lee Sle-gee,Negash EmnetORCID

Abstract

This study analyzes the impact of land use/land cover (LULC) changes on the hydrology of the dry Afromontane forest landscape in northern Ethiopia. Landsat satellite images of thematic mapper (TM) (1986), TM (2001), and Operational Land Imager (OLI) (2018) were employed to assess LULC. All of the images were classified while using the maximum likelihood image classification technique, and the changes were assessed by post-classification comparison. Seven LULC classes were defined with an overall accuracy 83–90% and a Kappa coefficient of 0.82–0.92. The classification result for 1986 revealed dominance of shrublands (48.5%), followed by cultivated land (42%). Between 1986 and 2018, cultivated land became the dominant (39.6%) LULC type, accompanied by a decrease in shrubland to 32.2%, as well as increases in forestland (from 4.8% to 21.4%) and bare land (from 0% to 0.96%). The soil conservation systems curve number model (SCS-CN) was consequently employed to simulate forest hydrological response to climatic variations and land-cover changes during three selected years. The observed changes in direct surface runoff, the runoff coefficient, and storage capacity of the soil were partially linked to the changes in LULC that were associated with expanding bare land and built-up areas. This change in land use aggravates the runoff potential of the study area by 31.6 mm per year on average. Runoff coefficients ranged from 25.3% to 47.2% with varied storm rainfall intensities of 26.1–45.4 mm/ha. The temporal variability of climate change and potential evapotranspiration increased by 1% during 1981–2018. The observed rainfall and modelled runoff showed a strong positive correlation (R2 = 0.78; p < 0.001). Regression analysis between runoff and rainfall intensity indicates their high and significant correlation (R2 = 0.89; p < 0.0001). Changes were also common along the slope gradient and agro-ecological zones at varying proportions. The observed changes in land degradation and surface runoff are highly linked to the change in LULC. Further study is suggested on climate scenario-based modeling of hydrological processes that are related to land use changes to understand the hydrological variability of the dry Afromontane forest ecosystems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3