Multidomain Convolution Neural Network Models for Improved Event-Related Potential Classification

Author:

Chen Xiaoqian1,Gupta Resh S.2,Gupta Lalit1ORCID

Affiliation:

1. School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA

2. Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA

Abstract

Two convolution neural network (CNN) models are introduced to accurately classify event-related potentials (ERPs) by fusing frequency, time, and spatial domain information acquired from the continuous wavelet transform (CWT) of the ERPs recorded from multiple spatially distributed channels. The multidomain models fuse the multichannel Z-scalograms and the V-scalograms, which are generated from the standard CWT scalogram by zeroing-out and by discarding the inaccurate artifact coefficients that are outside the cone of influence (COI), respectively. In the first multidomain model, the input to the CNN is generated by fusing the Z-scalograms of the multichannel ERPs into a frequency-time-spatial cuboid. The input to the CNN in the second multidomain model is formed by fusing the frequency-time vectors of the V-scalograms of the multichannel ERPs into a frequency-time-spatial matrix. Experiments are designed to demonstrate (a) customized classification of ERPs, where the multidomain models are trained and tested with the ERPs of individual subjects for brain-computer interface (BCI)-type applications, and (b) group-based ERP classification, where the models are trained on the ERPs from a group of subjects and tested on single subjects not included in the training set for applications such as brain disorder classification. Results show that both multidomain models yield high classification accuracies for single trials and small-average ERPs with a small subset of top-ranked channels, and the multidomain fusion models consistently outperform the best unichannel classifiers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3