Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network

Author:

Choi Jeonghun,Lee Seung JunORCID

Abstract

A nuclear power plant (NPP) consists of an enormous number of components with complex interconnections. Various techniques to detect sensor errors have been developed to monitor the state of the sensors during normal NPP operation, but not for emergency situations. In an emergency situation with a reactor trip, all the plant parameters undergo drastic changes following the sudden decrease in core reactivity. In this paper, a machine learning model adopting a consistency index is suggested for sensor error detection during NPP emergency situations. The proposed consistency index refers to the soundness of the sensors based on their measurement accuracy. The application of consistency index labeling makes it possible to detect sensor error immediately and specify the particular sensor where the error occurred. From a compact nuclear simulator, selected plant parameters were extracted during typical emergency situations, and artificial sensor errors were injected into the raw data. The trained system successfully generated output that gave both sensor error states and error-free states.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. “Instrumentation and Control (I&C) Systems in Nuclear Power Plants: A Time of Transition ”https://www-legacy.iaea.org/About/Policy/GC/GC52/GC52InfDocuments/English/gc52inf-3-att5_en.pdf

2. Human Error Mode Identification for NPP Main Control Room Operations Using Soft Controls

3. Errors in human performance. California Univ San Diego LA JOLLA Center For Human Information Processing;Norman;Tech. Rep.,1980

4. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants;Coble,2012

5. A Denoising Based Autoassociative Model for Robust Sensor Monitoring in Nuclear Power Plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3