Enhanced Nitrate Nitrogen Removal from Constructed Wetland via Fe3O4/Granular Activated Carbon Anode Microbial Electrolysis Cell under Low C/N Ratio

Author:

Yang Heng1,Tan Shenyu1,Huang Yu1,Tang Xinhua1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

Abstract

In this study, a constructed wetland–Fe3O4/granular activated carbon anode microbial electrolysis cell (CW-FMEC) was constructed to enhance denitrification in low COD/N ratio wastewater. The introduction of Fe3O4 boosted the expression of functional genes involved in the denitrification pathway, and the abundance of narG, nirS, and nosZ increased by 99.29%, 70.54%, and 132.18%, respectively, compared to CW. In addition, the content of c-type cytochromes (c-Cyts) and EPS were also enhanced in the CW-FMEC. The microbial communities study displayed that Thauera, Dechloromonas, and Arenimonas became the main genera for denitrification. The denitrification performance at different COD/N ratios was investigated in depth. Under optimal working circumstances, the CW-FMEC had an excellent nitrate removal rate (88.9% ± 1.12%) while accumulating nearly no NO2−-N or NH4+-N in the effluent. This study provides a new direction for the development of CW-MEC and accelerates its implementation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3