Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces

Author:

Cheng Yajuan,Xiong ShiyunORCID,Zhang Tao

Abstract

The manipulation of phonon transport with coherent waves in solids is of fundamental interest and useful for thermal conductivity design. Based on equilibrium molecular dynamics simulations and lattice dynamics calculations, the thermal transport in SiGe superlattice nanowires with a tuned Si/Ge interface density was investigated by using the core-shell and phononic structures as the primary stacking layers. It was found that the thermal conductivity decreased with the increase of superlattice period lengths (Lp) when Lp was larger than 4 nm. This is because introducing additional Si/Ge interfaces can enhance phonon scattering. However, when Lp<4 nm, the increased interface density could promote heat transfer. Phonon density-of-state analysis demonstrates that new modes between 10 and 14 THz are formed in structures with dense Si/Ge interfaces, which is a signature of coherent phonon transport as those modes do not belong to bulk Si or Ge. The density of the newly generated modes increases with the increase of interface density, leading to an enhanced coherent transport. Besides, with the increase of interface density, the energy distribution of the newly generated modes becomes more balanced on Si and Ge atoms, which also facilitates heat transfer. Our current work is not only helpful for understanding coherent phonon transport but also beneficial for the design of new materials with tunable thermal conductivity.

Funder

National Natural Science Foundation of China

Major Research Plan of the National Natural Science Foundation of China

Major International (Regional) Joint Research Project of the National Natural Science Foundation of China

State Key Laboratory of Intense Pulsed Radiation Simulation and Effect

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3