Effective Antibacterial/Photocatalytic Activity of ZnO Nanomaterials Synthesized under Low Temperature and Alkaline Conditions

Author:

Kim Sujeong,Park HyerimORCID,Pandey SadanandORCID,Jeong Daewon,Lee Chul-Tae,Do Jeong YeonORCID,Park Sun-Min,Kang MisookORCID

Abstract

The purpose of this study was to evaluate the surface properties of ZnO nanomaterials based on their ability to photodegrade methyl blue dye (MB) and to show their antibacterial properties against different types of Gram-positive bacteria (Bacillus manliponensis, Micrococcus luteus, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). In this study, ZnO nanomaterials were synthesized rapidly and easily in the presence of 1–4 M NaOH at a low temperature of 40 °C within 4 h. It was found that the ZnO nanomaterials obtained from the 1.0 M (ZnO–1M) and 2.0 M (ZnO–2M) aqueous solutions of NaOH had spherical and needle-shaped forms, respectively. As the concentration of NaOH increased, needle thickness increased and the particles became rod-like. Although the ZnO nanomaterial shapes were different, the bandgap size remained almost unchanged. However, as the NaOH concentration increased, the energy position of the conduction band shifted upward. Photo current curves and photoluminescence intensities suggested that the recombination between photoexcited electrons and holes was low in the ZnO–4M materials prepared in 4.0 M NaOH solution; however, charge transfer was easy. ∙O2− radicals were generated more than ∙OH radicals in ZnO–4M particles, showing stronger antibacterial activity against both Gram-positive and Gram-negative bacteria and stronger decomposition ability on MB dye. The results of this study suggest that on the ZnO nanomaterial surface, ∙O2− radicals generated are more critical for antibacterial activity than particle shape.

Funder

Development of Technology to Solve Marine Microplastic Issues of the Korea Institute of Marine Science and Technology Promotion

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3