Fabrication of High-Performance Colorimetric Membrane by Incorporation of Polydiacetylene into Polyarylene Ether Nitriles Electrospinning Nanofibrous Membranes

Author:

Wang Pan,Liu Xidi,You Yong,Wang Mengxue,Huang Yumin,Li Ying,Li Kui,Yang Yuxin,Feng Wei,Liu Qiancheng,Chen Jiaqi,Yang XulinORCID

Abstract

Polyarylene ether nitrile (PEN) is a novel high-performance engineering plastic with various applications, particularly in thermoresistance-required fields. In this study, a well-known stimuli-response polydiacetylene monomer, 10, 12-pentacosadiynoic acid (PCDA), was encapsulated within electrospun PEN nanofibers to fabricate a colorimetric membrane with satisfactory thermal and corrosion resistance. To optimize the compatibility with PCDA, two PENswith distinct molecular chains were utilized: PEN−PPL and PEN−BPA. The chemical structure and elemental mapping analysis revealed that the PCDA component was successfully incorporated into the PEN fibrous. The PCDA bound significantly better to the PEN−PPL than to the PEN−BPA; due to the carboxyl groups present on the side chains of PEN−PPL, the surface was smooth and the color changed uniformly as the temperature rose. However, owing to its poor compatibility with PEN−BPA, the PCDA formed agglomerations on the fibers. The thermal analysis demonstrated that the membranes obtained after PCDA compounding maintained their excellent heat resistance. The 5% weight loss temperatures of composite nanofibrous membranes manufactured by PEN−PPL and PEN−BPA were 402 °C and 506 °C, respectively, and their glass transition temperatures were 219 °C and 169 °C, respectively, indicating that the blended membranes can withstand high temperatures. The evaluation of application performance revealed that the composite membranes exhibited good dimensional stability upon high thermal and corrosive situations. Specifically, the PEN−P−PCDA did not shrink at 170 °C. Both composite membranes were dimensionally stable when exposed to the alkali aqueous solution. However, PEN−P−PCDA is more sensitive to OH−, exhibiting color transition at pH > 8, whereas PEN−B−PCDA exhibited color transition at high OH− concentrations (pH ≥ 13), with enhanced alkali resistance stability owing to its nanofibrous architecture. This exploratory study reveals the feasibility of PEN nanofibers functionalized using PCDA as a desirable stimulus-response sensor even in high-temperature and corrosive harsh environments.

Funder

Natural Science Foundation of Sichuan Province

Research Initiated Project of Chengdu University

Chengdu University graduate talent training quality and teaching reform project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3