An Improved Experiment for Measuring Lithium Concentration-Dependent Material Properties of Graphite Composite Electrodes

Author:

Liu Huibing,Zhang Guoxing,Li DaweiORCID,Zhang JunqianORCID

Abstract

The in situ curvature measurement of bilayer beam electrodes is widely used to measure the lithium concentration-dependent material properties of lithium-ion battery electrodes, and further understand the mechano–electrochemical coupling behaviors during electrochemical cycling. The application of this method relies on the basic assumption that lithium is uniformly distributed along the length and thickness of the curved active composite layer. However, when the electrode undergoes large bending deformation, the distribution of lithium concentration in the electrolyte and active composite layer challenges the reliability of the experimental measurements. In this paper, an improved experiment for simultaneously measuring the partial molar volume and the elastic modulus of the graphite composite electrode is proposed. The distance between the two electrodes in the optical electrochemical cell is designed and graphite composite electrodes with four different thickness ratios are measured. The quantitative experimental data indicate that the improved experiment can better satisfy the basic assumptions. The partial molar volume and the elastic modulus of the graphite composite electrode evolve nonlinearly with the increase of lithium concentration, which are related to the phase transition of graphite and also affected by the other components in the composite active layer. This improved experiment is valuable for the reliable characterization of the Li concentration-dependent material properties in commercial electrodes, and developing next-generation lithium batteries with more stable structures and longer lifetimes.

Funder

National Natural Science Foundation of China

Key Research Project of Zhejiang Laboratory

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3