Engineered Nanoparticles, Natural Nanoclay and Biochar, as Carriers of Plant-Growth Promoting Bacteria

Author:

Pavlicevic MilicaORCID,Abdelraheem Wael,Zuverza-Mena NubiaORCID,O’Keefe TanaORCID,Mukhtar Salma,Ridge Gale,Ranciato John,Haynes ChristyORCID,Elmer WadeORCID,Pignatello Joseph,Pagano LucaORCID,Caldara MarinaORCID,Marmiroli MartaORCID,Maestri ElenaORCID,Marmiroli Nelson,White Jason C.

Abstract

The potential of biochar and nanoparticles to serve as effective delivery agents for beneficial bacteria to crops was investigated. Application of nanoparticles and biochar as carriers for beneficial bacteria improved not only the amount of nitrogen-fixing and phosphorus-solubilizing bacteria in soil, but also improved chlorophyll content (1.2–1.3 times), cell viability (1.1–1.5 times), and antioxidative properties (1.1–1.4 times) compared to control plants. Treatments also improved content of phosphorus (P) (1.1–1.6 times) and nitrogen (N) (1.1–1.4 times higher) in both tomato and watermelon plants. However, the effect of biochars and nanoparticles were species-specific. For example, chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased the phosphorus content in tomato by 1.2 times compared to a 1.1-fold increase when nanoclay with adsorbed bacteria was applied. In watermelon, the situation was reversed: 1.1-fold increase in the case of chitosan-coated mesoporous silica nanoparticles and 1.2 times in case of nanoclay with adsorbed bacteria. Our findings demonstrate that use of nanoparticles and biochar as carriers for beneficial bacteria significantly improved plant growth and health. These findings are useful for design and synthesis of novel and sustainable biofertilizer formulations.

Funder

Fondazione CRUI

NSF Center for Sustainable Nanotechnology

“Departments of Excellence” program of the Italian Ministry for Education, University and Research

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3