Rapid Fabrication of Wavelength-Scale Micropores on Metal by Femtosecond MHz Burst Bessel Beam Ablation

Author:

Cheng Yang,Lu Yu,Yang Qing,Zhong Jun,Xu Mengchen,Gou Xiaodan,Kai Lin,Hou Xun,Chen FengORCID

Abstract

The preparation of the wavelength-scale micropores on metallic surfaces is limited by the high opacity of metal. At present, most micropores reported in the literature are more than 20 µm in diameter, which is not only large in size, but renders them inefficient for processing so that it is difficult to meet the needs of some special fields, such as aerospace, biotechnology, and so on. In this paper, the rapid laser fabrications of the wavelength-scale micropores on various metallic surfaces are achieved through femtosecond MHz burst Bessel beam ablation. Taking advantage of the long-depth focal field of the Bessel beam, high-density micropores with a diameter of 1.3 µm and a depth of 10.5 µm are prepared on metal by MHz burst accumulation; in addition, the rapid fabrication of 2000 micropores can be achieved in 1 s. The guidelines and experimental results illustrate that the formations of the wavelength-scale porous structures are the result of the co-action of the laser-induced periodic surface structure (LIPSS) effect and Bessel beam interference. Porous metal can be used to store lubricant and form a lubricating layer on the metallic surface, thus endowing the metal resistance to various liquids’ adhesion. The microporous formation process on metal provides a new physical insight for the rapid preparation of wavelength-scale metallic micropores, and promotes the application of porous metal in the fields of catalysis, gas adsorption, structural templates, and bio-transportation fields.

Funder

National Science Foundation of China

International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3