Acoustically Stimulated Charge Transport in Graphene Film

Author:

Roshchupkin DmitryORCID,Kononenko OlegORCID,Fakhrtdinov Rashid,Emelin Evgenii,Sergeev Alexander

Abstract

The process of acoustically stimulated charge transport in the graphene film on the surface of the YZ−cut of a LiNbO3 crystal was investigated. It was found that the dependence of the current in the graphene film on the frequency of the surface acoustic wave (SAW) excitation repeats the amplitude-frequency response of the SAW delay time line. It is shown that increasing the SAW amplitude leads to an increase in the current in the graphene film, and the current in the graphene film depends linearly on the amplitude of the high-frequency input signal supplied to the interdigital transducer (IDT, in dB). It is demonstrated that at a positive bias potential on the graphene film, the SAW propagation allows to change the direction of the current in the graphene film by changing the amplitude of the SAW. It is also shown that in the frequency range of the amplitude-frequency response of the SAW delay time line, the current in the graphene film can vary from positive to negative values depending on the frequency. The capability to control the SAW excitation frequency or the SAW amplitude makes it possible to control the value and direction of the current in the graphene film. The SAW propagation lets to collect and transport the photo-stimulated charges in the graphene film on the crystal surface.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3