Comparative Study on Gas-Sensing Properties of 2D (MoS2, WS2)/PANI Nanocomposites-Based Sensor

Author:

Parangusan Hemalatha,Bhadra Jolly,Al-Qudah Razen Amer,Elhadrami Elhassen CheikhORCID,Al-Thani Noora JaborORCID

Abstract

NH3 is a highly harmful gas; when inhaled at levels that are too high for comfort, it is very dangerous to human health. One of the challenging tasks in research is developing ammonia sensors that operate at room temperature. In this study, we proposed a new design of an NH3 gas sensor that was comprised of two-dimensional (TMDs, mainly WS2 and MoS2) and PANI. The 2D-TMDs metal was successfully incorporated into the PANI lattice based on the results of XRD and SEM. The elemental EDX analysis results indicated that C, N, O, W, S and Mo were found in the composite samples. The bandgap of the materials decreased due to the addition of MoS2 and WS2. We also analyzed its structural, optical and morphological properties. When compared to MoS2 and PANI, the proposed NH3 sensor with the WS2 composite was found to have high sensitivity. The composite films also exhibited response and recovery times of 10/16 and 14/16 s. Therefore, the composite PANI/2D-TMDs is a suitable material for NH3 gas detection applications.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3