A Combination of Machine Learning Algorithms for Marine Plastic Litter Detection Exploiting Hyperspectral PRISMA Data

Author:

Taggio Nicolò,Aiello AntonelloORCID,Ceriola Giulio,Kremezi MariaORCID,Kristollari ViktoriaORCID,Kolokoussis PolychronisORCID,Karathanassi VassiliaORCID,Barbone Enrico

Abstract

A significant amount of the produced solid waste reaching the oceans is made of plastics. The amount of plastic debris in the ocean and coastal areas is steadily increasing and is now a major global environmental issue. The monitoring of marine plastic litter, ground-based monitoring systems and/or field campaigns are time-consuming, expensive, require great organisational efforts, and provide very limited information in terms of the spatial and temporal dynamics of marine debris. Earth Observation (EO) by satellite can contribute significantly to marine plastic litter detection. In 2019, a new hyperspectral satellite, called PRISMA, was launched by the Italian Space Agency. The high spectral resolution of PRISMA may allow for better detection of floating plastic materials. At the same time, Machine Learning (ML) algorithms have the potential to find hidden patterns and identify complex relations among data and are increasingly employed in EO. This paper presents the development of a new method of identifying floating plastic objects in coastal areas by exploiting pan-sharpened hyperspectral PRISMA data, based on the combination of unsupervised and supervised ML algorithms. The study consisted of a configuration phase, during which the algorithms were trained in a fully controlled test, and a validation phase, in which the pre-trained algorithms were applied to satellite data collected at different sites and in different periods of the year. Despite the limited input data, results suggest that the tested ML approach, applied to pan-sharpened PRISMA data, can effectively recognise floating objects and plastic targets. The study indicates that increasing input datasets can help achieve higher-quality results.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference23 articles.

1. Production, Use, and Fate of Synthetic Polymers;Geyer,2020

2. Plastic Pollution in the Oceans: A Systemic Analysis—Status Quo and Possible Sustainable Solutions;Casoli,2020

3. Marine Plastic Debris and Microplastics: Global Lessons and Research to Inspire Action and Guide Policy Change;Kershaw,2016

4. Classify plastic waste as hazardous

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3