Response of Sediment Connectivity to Altered Convergence Processes Induced by Forest Roads in Mountainous Watershed

Author:

Zhao QingheORCID,Jing Yaru,Wang An,Yu Zaihui,Liu Yi,Yu Jinhai,Liu Guoshun,Ding Shengyan

Abstract

Forest roads significantly affect sediment connectivity in mountainous catchments by contributing to the production of and disturbing the confluence of sediment-loaded runoff. This study considered forest roads as pathways and sinks of sediment-loaded runoff to understand the effects of forest roads on the confluence characteristics and sediment connectivity in mountainous a catchment using a scenario simulation. In order to determine the contribution and spatial relationship between sediment connectivity and influencing factors, this study utilized buffer analysis, an extremely randomized tree model, and multiscale geographically weighted regression. The results show that the presence of forest roads significantly changes the transport process and connectivity of runoff and sediment in the mountainous catchment. Specifically, flow length increases, but flow accumulation, upslope contributing area, and topographic index decrease with increasing distance from roads and streams. Meanwhile, the effects of roads on convergence characteristics and sediment connectivity are mainly manifested within a certain threshold that varies with different confluence characteristics. Moreover, sediment connectivity increases when considering roads as pathways and sinks of sediment-loaded runoff, especially on the upper hillslopes intercepted by roads and at the road–stream crossings. In addition, the closer the distance to the roads, the greater the impact of road on the confluence characteristics and sediment connectivity. Change in flow length is the most important factor affecting the sediment connectivity among all of the other convergence, terrain, and spatial distance characteristics. The longer the flow length, the lower the sediment connectivity. In conclusion, this study demonstrates that the altered confluence processes by roads increases the possibility that sediment-loaded runoff will be transported to the catchment outlet, which is of significance for the proper management of forest roads in mountainous catchments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Program for Science and Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3