A Bibliometric and Visualized Analysis of Research Progress and Trends in Rice Remote Sensing over the Past 42 Years (1980–2021)

Author:

Xu TianyueORCID,Wang Fumin,Yi Qiuxiang,Xie Lili,Yao XiaopingORCID

Abstract

Rice is one of the most important food crops around the world. Remote sensing technology, as an effective and rapidly developing method, has been widely applied to precise rice management. To observe the current research status in the field of rice remote sensing (RRS), a bibliometric analysis was carried out based on 2680 papers of RRS published during 1980–2021, which were collected from the core collection of the Web of Science database. Quantitative analysis of the number of publications, top countries and institutions, popular keywords, etc. was conducted through the knowledge mapping software CiteSpace, and comprehensive discussions were carried out from the aspects of specific research objects, methods, spectral variables, and sensor platforms. The results revealed that an increasing number of countries and institutions have conducted research on RRS and a great number of articles have been published annually, among which, China, the United States of America, and Japan were the top three and the Chinese Academy of Sciences, Zhejiang University, and Nanjing Agricultural University were the first three research institutions with the largest publications. Abundant interest was paid to “reflectance”, followed by “vegetation index” and “yield” and the specific objects mainly focused on growth, yield, area, stress, and quality. From the perspective of spectral variables, reflectance, vegetation index, and back-scattering coefficient appeared the most frequently in the frontiers. In addition to satellite remote sensing data and empirical models, unmanned air vehicle (UAV) platforms and artificial intelligence models have gradually become hot topics. This study enriches the readers’ understanding and highlights the potential future research directions in RRS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3