Study on Sensitivity of Observation Error Statistics of Doppler Radars to the Radar forward Operator in Convective-Scale Data Assimilation

Author:

Zeng Yuefei,Li Hong,Feng Yuxuan,Blahak Ulrich,de Lozar Alberto,Luo Jingyao,Min Jinzhong

Abstract

In the present work, we investigate the impacts on the observation error (OE) statistics due to different types of errors in the forward operator (FE) for both radar reflectivity and radial wind data, in the context of convective-scale data assimilation in the summertime. A series of sensitivity experiments were conducted with the Efficient Modular VOlume RADar Operator (EMVORADO), using the operational data assimilation system of the Deutscher Wetterdienst (DWD, German Weather Service). The investigated FEs are versatile, including errors caused by neglecting the terminal fall speed of hydrometeor, the reflectivity weighting, and the beam broadening and attenuation effects, as well as errors caused by different scattering schemes and formulations for melting particles. For reflectivity, it is found that accounting for the beam broadening effect evidently reduces the standard deviations, especially at higher altitudes. However, it does not shorten the horizontal or along-beam correlation length scales. In comparison between the Rayleigh and the Mie schemes (with specific configurations), the former one results in much smaller standard deviations for heights up to 4 km, and aloft, slightly larger standard deviations. Imposing the attenuation to the Mie scheme slightly reduces the standard deviations at lower altitudes; however, it largely increases the standard deviations at higher altitudes and it also leads to longer correlation length scales. For radial wind, positive impacts of considering the beam broadening effect on standard deviations and neutral impacts on correlations are observed. For both reflectivity and radial wind, taking the terminal fall speed of hydrometeor and the reflectivity weighting into account does not make remarkable differences in the estimated OE statistics.

Funder

Program of Shanghai Academic/Technology Research Leader

the Shanghai Typhoon Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3