Subpixel Multilevel Scale Feature Learning and Adaptive Attention Constraint Fusion for Hyperspectral Image Classification

Author:

Ge Zixian,Cao GuoORCID,Zhang YouqiangORCID,Shi Hao,Liu Yanbo,Shafique Ayesha,Fu Peng

Abstract

Convolutional neural networks (CNNs) play an important role in hyperspectral image (HSI) classification due to their powerful feature extraction ability. Multiscale information is an important means of enhancing the feature representation ability. However, current HSI classification models based on deep learning only use fixed patches as the network input, which may not well reflect the complexity and richness of HSIs. While the existing methods achieve good classification performance for large-scale scenes, the classification of boundary locations and small-scale scenes is still challenging. In addition, dimensional dislocation often exists in the feature fusion process, and the up/downsampling operation for feature alignment may introduce extra noise or result in feature loss. Aiming at the above issues, this paper deeply explores multiscale features, proposes an adaptive attention constraint fusion module for different scale features, and designs a semantic feature enhancement module for high-dimensional features. First, HSI data of two different spatial scales are fed into the model. For the two inputs, we upsample them using bilinear interpolation to obtain their subpixel data. The proposed multiscale feature extraction module is intended to extract the features of the above four parts of the data. For the extracted features, the multiscale attention fusion module is used for feature fusion, and then, the fused features are fed into the high-level feature semantic enhancement module. Finally, based on the fully connected layer and softmax layer, the prediction results of the proposed model are obtained. Experimental results on four public HSI databases verify that the proposed method outperforms several state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3