An Improved Spatiotemporal Weighted Mean Temperature Model over Europe Based on the Nonlinear Least Squares Estimation Method

Author:

Zhang BingbingORCID,Wang ZhengtaoORCID,Li Wang,Jiang Wei,Shen Yi,Zhang Yan,Zhang Shike,Tian Kunjun

Abstract

Weighted average temperature (Tm) plays a crucial role in global navigation satellite system (GNSS) precipitable water vapor (PWV) retrieval. Aiming at the poor applicability of the existing Tm models in Europe, in the article, we used observations from 48 radiosonde stations over Europe from 2014 to 2020 to establish a weighted average temperature model in Europe (ETm) by the nonlinear least squares estimation method. The ETm model takes into account factors such as ground temperature, water vapor pressure, latitude, and their annual variation, semiannual variation and diurnal variation. Taking the Tm obtained from the radiosonde data by the integration method in 2021 as the reference value, the accuracy of the ETm model was evaluated and compared with the commonly used Bevis model, ETmPoly model, and GPT2w model. The results of the 48 modeled stations showed that the mean bias and root mean square (RMS) values of the ETm model were 0.06 and 2.85 K, respectively, which were 21.7%, 11.5%, and 31.8% higher than the Bevis, ETmPoly, and GPT2w-1 (1° × 1° resolution) models, respectively. In addition, the radiosonde data of 12 non-modeling stations over Europe in 2021 were selected to participate in the model accuracy validation. The mean bias and RMS values of the ETm model were –0.07 and 2.87 K, respectively. Compared with the Bevis, ETmPoly, and GPT2w-1 models, the accuracy (in terms of RMS values) increased by 20.5%, 10.6%, and 35.2%, respectively. Finally, to further verify the superiority of the ETm model, the ETm model, and other Tm models were applied to the GNSS PWV calculation. The ETm model had mean RMSPWV and RMSPWV/PWV values of 0.17 mm and 1.03%, respectively, which were less than other Tm models. Therefore, the ETm model has essential applications in GNSS PWV over Europe.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3