A Global 250-m Downscaled NDVI Product from 1982 to 2018

Author:

Ma Zhimin,Dong ChunyuORCID,Lin KairongORCID,Yan Yu,Luo JianfengORCID,Jiang Dingshen,Chen XiaohongORCID

Abstract

Satellite-based normalized difference vegetation index (NDVI) time series data are useful for monitoring the changes in vegetation ecosystems in the context of global climate change. However, most of the current NDVI products cannot effectively reconcile high spatial resolution and continuous observations in time. Here, to produce a global-scale, long-term, and high-resolution NDVI database, we developed a simple and new data downscaling approach. The downscaling algorithm considers the pixel-wise ratios of the coefficient of variation (CV) between the coarse- and fine-resolution NDVI data and relative changes in the NDVI against a baseline period. The algorithm successfully created a worldwide monthly NDVI database with 250 m resolution from 1982 to 2018 by translating the fine spatial information from MODIS (Moderate-resolution Imaging Spectroradiometer) data and the long-term temporal information from AVHRR (Advanced Very High Resolution Radiometer) data. We employed the evaluation indices of root mean square error (RMSE), mean absolute error (MAE), and Pearson’s correlation coefficient (Pearson’s R) to assess the accuracy of the downscaled data against the MODIS NDVI. Both the RMSE and MAE values at the regional and global scales are typically between 0 and 0.2, whereas the Pearson’s R values are mostly above 0.7, which implies that the downscaled NDVI product is similar to the MODIS NDVI product. We then used the downscaled data to monitor the NDVI changes in different plant types and places with significant vegetation heterogeneity, as well as to investigate global vegetation trends over the last four decades. The Google Earth Engine platform was used for all the data downscaling processes, and here we provide a code for users to easily acquire data corresponding to any part of the world. The downscaled global-scale NDVI time series has high potential for the monitoring of the long-term temporal and spatial dynamics of terrestrial ecosystems under changing environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3