Model-Based Condition-Monitoring and Jamming-Tolerant Control of an Electro-Mechanical Flight Actuator with Differential Ball Screws

Author:

Di Rito GianpietroORCID,Luciano Benedetto,Borgarelli Nicola,Nardeschi Marco

Abstract

The work deals with the development of deterministic model-based condition-monitoring algorithms for an electromechanical flight control actuator with fault-tolerant architecture, in which two permanent magnets synchronous motors are coupled with differential ball screws in speed-summing paradigm, so that the system can operate even after a motor fault, an inverter fault or a mechanical jamming. To demonstrate the potential applicability of the system for safety-critical aerospace applications, the failure transients related to major fault modes have to be characterised and analysed. By focusing the attention to jamming faults, a detailed nonlinear model of the actuator is developed from physical first principles and experimentally validated in both time and frequency domains for normal condition and with different types of jamming. The validated model is then used to design the condition-monitoring algorithms and to characterize the system failure transient, by simulating mechanical blocks in different locations of the transmission. The operability after the fault, obtained via fault-tolerant control strategy and position regulator reconfiguration, is also verified, by highlighting and discussing possible enhancements and criticalities.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference55 articles.

1. Flightpath 2050: Europe’s Vision for Aviationhttps://op.europa.eu/en/publication-detail/-/publication/7d834950-1f5e-480f-ab70-ab96e4a0a0ad/language-en

2. Technological, economic and environmental prospects of all-electric aircraft

3. All-electric aircraft

4. Moving towards a more electric aircraft

5. More Electricity in the Air: Toward Optimized Electrical Networks Embedded in More-Electrical Aircraft

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3