Computational Intelligence-Based Prognosis for Hybrid Mechatronic System Using Improved Wiener Process

Author:

Yu Ming,Lu Haotian,Wang HaiORCID,Xiao Chenyu,Lan Dun,Chen Junjie

Abstract

In this article, a fast krill herd algorithm is developed for prognosis of hybrid mechatronic system using the improved Wiener degradation process. First, the diagnostic hybrid bond graph is used to model the hybrid mechatronic system and derive global analytical redundancy relations. Based on the global analytical redundancy relations, the fault signature matrix and mode change signature matrix for fault and mode change isolation can be obtained. Second, in order to determine the true faults from the suspected fault candidates after fault isolation, a fault estimation method based on adaptive square root cubature Kalman filter is proposed when the noise distributions are unknown. Then, the improved Wiener process incorporating nonlinear term is developed to build the degradation model of incipient fault based on the fault estimation results. For prognosis, the fast krill herd algorithm is proposed to estimate unknown degradation model coefficients. After that, the probability density function of remaining useful life is derived using the identified degradation model. Finally, the proposed methods are validated by simulations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3