Reversible Torsional Actuation of Hydrogel Filled Multifilament Fibre Actuator

Author:

Zhang Xi,Zhang Jinxuan,Salahuddin BiditaORCID,Gao ShuaiORCID,Aziz ShazedORCID,Zhu Zhonghua

Abstract

Twisted polymer fibre actuators provide high torsional rotation from stimulated volume expansion, induced either by chemical fuelling, thermal stimulation, or electrochemical charging. One key limitation of these actuators is the irreversibility of torsional stroke that limits their feasibility when considering real-life smart applications. Moreover, scaling the torsional stroke of these actuators becomes difficult when these are integrated into practically usable systems such as smart textiles, due to the external and variable opposing torque that is applied by the adjacent non-actuating fibres. Herein, a simple composite type torsional actuator made of hydrogel coated commercial textile cotton multifilament fibre is demonstrated. This novel actuator is of high moisture responsiveness, given that hydrogels are capable of providing huge volume expansion and twisting the overall system can transform the volumetric expansion to fibre untwisting based torsional actuation. Theoretical treatment of torsional actuation is also demonstrated based on the change in torsional stiffness of dry and wet fibres as well as a few externally applied torques. The agreement between experimental measurements and theoretical estimation is found reasonable, and the investigation allows the near-appropriate estimation of torsional stroke before integrating an actuator into a smart system.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3