Abstract
This paper presents a cooperative object transportation technique using deep reinforcement learning (DRL) based on curricula. Previous studies on object transportation highly depended on complex and intractable controls, such as grasping, pushing, and caging. Recently, DRL-based object transportation techniques have been proposed, which showed improved performance without precise controller design. However, DRL-based techniques not only take a long time to learn their policies but also sometimes fail to learn. It is difficult to learn the policy of DRL by random actions only. Therefore, we propose two curricula for the efficient learning of object transportation: region-growing and single- to multi-robot. During the learning process, the region-growing curriculum gradually extended to a region in which an object was initialized. This step-by-step learning raised the success probability of object transportation by restricting the working area. Multiple robots could easily learn a new policy by exploiting the pre-trained policy of a single robot. This single- to multi-robot curriculum can help robots to learn a transporting method with trial and error. Simulation results are presented to verify the proposed techniques.
Funder
Ministry of Science and ICT, South Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献